Structure Reports

Online
ISSN 1600-5368

Xiang-Gao Meng* and An-Xin Wu*

Department of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
mengxianggao@mail.ccnu.edu.cn,
chwax@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.053$
$w R$ factor $=0.139$
Data-to-parameter ratio $=16.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2,5-Bis(2-methoxyphenyl)furan

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}$, the dihedral angles between the two benzene rings and the furan ring are 3.7 (1) and $1.0(1)^{\circ} . \mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions are observed in the crystal structure.

Comment

We have synthesized 2,5-bis(2-methoxyphenyl)furan, (I), according to the literature method of Wu et al. (1997) and its structure is reported here.

(I)

The molecule is essentially planar (Fig. 1). Selected bond lengths and angles are listed in Table 1. $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions are observed in the crystal structure (see Table 2 and Fig. 2). Analysis using PLATON (Spek, 2003) shows that the distance between the centroids of the $\mathrm{C} 2-\mathrm{C} 7$ and $\mathrm{C} 12^{\mathrm{i}}-$ $\mathrm{C} 17^{\mathrm{i}}$ benzene rings is 3.89 (1) \AA [symmetry code: (i) $x, 1+y$, $z]$.

Experimental

3-Ethoxy-1-(2-methoxyphenyl)propan-1-one was first synthesized according to the literature (Pelter et al., 1982). Sodium hydride (0.4 g , 80%) was washed with dry pentane and then suspended in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. To this was added a solution of ethyl 3-(2-methoxyphenyl)-3-oxopropanoate ($2.2 \mathrm{~g}, 10 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{ml})$ and then a solution of ethyl 2-bromo-3-(2-methoxyphenyl)-3oxopropanoate ($3 \mathrm{~g}, 10 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The product was then refluxed with stirring for 3 h . The suspension was cooled, washed with water $(20 \mathrm{ml})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After removal of the solvent, the residue was purified, affording diethyl 2,3-bis(2methoxybenzoyl)succinate. Toluene- p-sulfonic acid (5 g) was added to a solution of diethyl 2,3-bis(2-methoxybenzoyl)succinate (2.2 g , 5 mmol) in dry benzene (50 ml). The mixture was refluxed for 8 h and concentrated. The residue was chromatographed on silica gel (light petroleum-ethyl acetate, 8:1 (v/v) to give diethyl 2,5-bis(2-methoxy-phenyl)furan-3,4-dicarboxylate which was hydrogenated, oxidized and decarboxylated to give the title compound. Crystals suitable for X-ray analysis were obtained by recrystallization of the the title compound from ethanol over a period of two weeks.

Received 1 August 2005
Accepted 6 September 2005
Online 14 September 2005

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}$
$M_{r}=280.31$
Monoclinic, $P 2 / c$
$a=15.4110$ (18) \AA
$b=6.6402$ (8) A
$c=14.6523$ (17) \AA
$\beta=108.898$ (2) ${ }^{\circ}$
$V=1418.6$ (3) \AA^{3}
$Z=4$
$D_{x}=1.312 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1227 reflections
$\theta=2.8-23.2^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, yellow
$0.30 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.976, T_{\text {max }}=0.984$
8057 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.139$
$S=1.03$
3106 reflections
192 parameters
H -atom parameters constrained

3106 independent reflections
1899 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-19 \rightarrow 19$
$k=-8 \rightarrow 8$
$l=-14 \rightarrow 18$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0573 P)^{2}\right. \\
+0.0627 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.15 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{O} 1$	$1.423(2)$	$\mathrm{C} 11-\mathrm{O} 3$	$1.376(2)$
$\mathrm{C} 2-\mathrm{O} 1$	$1.369(2)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.392(2)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.407(3)$	$\mathrm{C} 12-\mathrm{C} 17$	$1.402(2)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.387(2)$	$\mathrm{C} 17-\mathrm{O} 2$	$1.378(2)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.460(2)$	$\mathrm{C} 18-\mathrm{O} 2$	$1.422(2)$
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 8$	$122.10(18)$	$\mathrm{O} 3-\mathrm{C} 11-\mathrm{C} 12$	$114.86(15)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$136.74(18)$	$\mathrm{O} 2-\mathrm{C} 17-\mathrm{C} 12$	$115.51(16)$
$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 7$	$114.63(16)$	$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 1$	$117.61(16)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$136.69(17)$	$\mathrm{C} 8-\mathrm{O} 3-\mathrm{C} 11$	$107.83(14)$

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).
$C g 1, C g 2$ and $C g 3$ are the centroids of rings $\mathrm{C} 12-\mathrm{C} 17, \mathrm{C} 2-\mathrm{C} 7$ and $\mathrm{O} 3 / \mathrm{C} 8-\mathrm{C} 11$, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots C g 1^{\mathrm{i}}$	0.93	2.80	$3.541(1)$	137
$\mathrm{C} 16-\mathrm{H} 16 \cdots C g 2^{\text {ii }}$	0.93	2.95	$3.722(1)$	142
$\mathrm{C} 18-\mathrm{H} 18 A \cdots C g 3^{\mathrm{iii}}$	0.96	3.24	$4.091(1)$	149

Symmetry codes: (i) $x,-y+1, z-\frac{3}{2}$; (ii) $x,-y, z-\frac{1}{2}$; (iii) $x, y-1, z$.
All H atoms were placed at idealized positions (methyl $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$, methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$ and aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$) and included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for all other H atoms.

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids.

A crystal packing diagram of (I), showing the $\mathrm{C}-\mathrm{H}-\pi$ and $\pi-\pi$ interactions as dashed lines. [Symmetry codes: (a) $x, 1+y, z ;(b) x, 1-y$, $\left.-\frac{1}{2}+z ;(c) x,-y, \frac{1}{2}+z ;(d) x,-1+y, z.\right]$

The authors are grateful to the Central China Normal University, the National Natural Science Foundation of China (grant No.20472022), and the Hubei Province Natural Science Fund (grant Nos. 2004ABA085 and 2004ABC002) for financial support.

References

Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
Pelter, A., Ward, R. S., Watson, D. J. \& Jack, I. R. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 183-190.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wu, A.-X., Wang, M.-Y. \& Pan, X.-F. (1997). Synth. Commun. 27, 2087-2091.

